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The study of the motion of a fluid ellipsoid has a long and fascinating history
stretching back originally to Laplace in the late 18th century. Recently, this subject
has been revived in the context of geophysical fluid dynamics, where it has been shown
that an ellipsoid of uniform potential vorticity remains an ellipsoid in a background
flow consisting of horizontal strain, vertical shear, and uniform rotation. The object of
the present work is to present a simple, appealing, and practical way of investigating
the motion of an ellipsoid not just in geophysical fluid dynamics but in general. The
main result is that the motion of an ellipsoid may be reduced to the evolution of a
symmetric, 3×3 matrix, under the action of an arbitrary 3×3 ‘flow’ matrix. The latter
involves both the background flow, which must be linear in the Cartesian coordinates
at the surface of the ellipsoid, and the self-induced flow, which was given by Laplace.

The resulting simple dynamical system lends itself ideally to both numerical and
analytical study. We illustrate a few examples and then present a theory for the
evolution of a vortex within a slowly varying background flow. We show that a
vortex may evolve quasi-adiabatically, that is, it stays close to an equilibrium form
associated with the instantaneous background flow. The departure from equilibrium,
on the other hand, is proportional to the rate of change of the background flow.

1. Introduction
At the turn of the 19th century, there was a great interest in the behaviour of fluid

ellipsoids, bodies of fluid having some distinct property bounded by either a free or
fixed surface. This work was inspired in part by numerous potential applications but
also in part by the mathematical appeal of this simple geometric form. Many great
mathematicians were involved, including Dirichlet, Maclauren, Todhunter, Lamb and
Chandrasekhar among others (see the book by Chandrasekhar 1969 for a review).

Much more recently, there has been a resurgence of activity in the area of geophys-
ical vortices (Meacham et al. 1994; Meacham, Morrison & Flierl 1997; Miyazaki,
Ueno & Shimonishi 1999; Hashimoto, Shimonishi & Miyazaki 1999; Miyazaki,
Furuichi & Takahashi 2001). This new activity appears to have its genesis in the
two-dimensional elliptical vortex model of Moore & Saffman (1971) and Kida (1981).
The two-dimensional work was developed in the aeronautical context, for very high
Reynolds number incompressible flows, as a simple model of aircraft wake vortices.
This model consists essentially of a pair of nonlinear equations governing the evolu-
tion of the vortex aspect ratio and orientation. It accounts in general for time-varying
background uniform strain and rotation. This model then spread into the geophys-
ical arena, where it has seen widespread use and where, arguably, it is much more
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justified due to the robustness of the two-dimensional approximation for large-scale
geophysical flows.

The three-dimensional extension of this model was first given by Meacham
et al. (1994). It was developed under the quasi-geostrophic approximation to the
full equations governing the motion of a stably stratified, rotating fluid. This approx-
imation is discussed more fully below, but briefly it is considered to be remarkably
good under many circumstances. Under this approximation, the flow field is purely
horizontal and non-divergent yet in general varies with height. The flow field can
thus be recovered from a scalar potential, the streamfunction, and for a uniform
vertical profile of the buoyancy frequency, the Laplacian of this streamfunction
(after a suitable scaling of the vertical coordinate) equals the potential vorticity – a
materially invariant scalar field responsible for the entire fluid motion. This is the
key connection with the two-dimensional model, where again the potential vorticity
(PV) is given by the Laplacian of a streamfunction. It means that the elliptical sol-
utions for uniform PV found by Moore, Saffman and Kida generalize naturally to
ellipsoidal solutions in three dimensions (and so on for higher dimensions, should
they be relevant).

In the present paper, we begin in § 2 by rederiving the equations describing the
motion of an ellipsoid under general circumstances. The novelty here is the use of a
symmetric 3 × 3 matrix as the prognostic variable. This appears to be the simplest
way of writing the equations. We then focus on the quasi-geostrophic model but
consistently present the equations, as well as an associated numerical algorithm, in
such a way that they can be used for other models of interest. In § 3, we examine
the background flow arising from a distant vortex or distribution of PV, and then
illustrate several examples of vortex evolution in this background flow. We next
develop a theory for the motion of an ellipsoid within a weak, slowly varying
background flow. This theory is shown to accurately describe the motion of an
ellipsoid for long times. A few conclusions and ideas for future work bring the paper
to a close in § 4.

2. Vortex evolution
2.1. Motion of an ellipsoid in a background flow

We consider for the moment a linear background flow of the form

ub(x, t) =Sb(t)x, (1)

whereSb is a 3×3 matrix. Within this flow, we place a single ellipsoidal vortex at the
origin and require only that its velocity field has the same form as (1), i.e. uv =Svx.
The total velocity field felt by the ellipsoid is

u =Sx (2)

where S = Sb +Sv , and this depends only on time t. We refer to S as the flow
matrix subsequently.

The ellipsoid is specified by its axis half-lengths a 6 b 6 c and the unit vectors â,

b̂ and ĉ directed along these axes (see figure 1). This geometric information may be
encapsulated in a single symmetric matrix A defined by

A =MDMT , (3)
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Figure 1. Definition of the ellipsoid parameters.

where the superscript T denotes transpose and the matrices M and D are given by

M = (â b̂ ĉ), (4a)

D =

 1/a2 0 0

0 1/b2 0

0 0 1/c2

 , (4b)

MT =

 âT

b̂T

ĉT

 . (4c)

HereM is a rotation matrix and therefore is orthonormal; in particularM−1 =MT .
The equation describing the surface of the ellipsoid is conveniently written as

xTAx = 1. (5)

By taking a time derivative of this equation and using dx/dt = u(x, t) = S(t)x, as
well as the implied relation dxT/dt = xTST (t), we obtain

xT
(
STA+AS+

dA
dt

)
x = 0. (6)

Since this must be true for all points x on the boundary of the ellipsoid, it follows
that

dA
dt

= −(STA+AS), (7)
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which is simply the equation for the evolution ofA in an arbitrary linear background
flow.

Note that A remains a symmetric matrix for all time since STA + AS is
automatically symmetric if A is.

2.2. The quasi-geostrophic ellipsoid

To go further, it is necessary to specify the flow matrix Sv in terms of A. Here, fol-
lowing previous works (Meacham et al. 1994, 1997; Miyazaki et al. 1999; Hashimoto
et al. 1999; Miyazaki et al. 2001), we consider the ‘quasi-geostrophic’ (QG) model,
which is frequently used to study atmospheric and oceanic flows. The QG equations
describe the motion of a rapidly rotating, stably stratified fluid, in the asymptotic
limit for which vortices spin slowly relative to the background rotation and for which
fluid velocities are small compared to gravity wave speeds (see Gill 1982 for a full
description of this system). For an inviscid, adiabatic fluid, the QG equations may
be expressed in terms of the conservation of a single material scalar, the ‘potential
vorticity’ q(x, t), i.e.

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0. (8)

In the QG model, the vertical velocity w = 0 to this order of approximation, so q is
advected in a layerwise manner. However, the horizontal velocity (u, v) depends on
all three spatial coordinates, and this is recovered from q via the inversion of

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= q (9)

for the streamfunction ψ, followed by the incompressibility relations

u = −∂ψ
∂y
, v =

∂ψ

∂x
(10)

in the special case (considered here) when the rotational and buoyancy frequencies f
and N are constant. This allows one to absorb f and N into the height coordinate z
and leaves the operator in (9) isotropic.

In the problem considered here of a single ellipsoidal vortex, we imagine q being
composed of two parts: (i) that due to the vortex itself qv , and (ii) that due to external
vortices or PV distributions qb. Correspondingly, ψ = ψv + ψb. The background flow
ψb arising from qb is not explicitly modelled, but rather we expand ψb in a Taylor
series in x, y and z about the origin (here the centre of the ellipsoid) and truncate
this series at second order. The constant part of ψb does not induce any flow and
can be ignored while the linear part of ψb induces a uniform flow. Here we adopt a
frame of reference moving with this flow so that the ellipsoid remains at the origin.
The quadratic part of ψb corresponds to a linear background velocity field, having a
flow matrix of the form

Sb =

 ∂ub/∂x ∂ub/∂y ∂ub/∂z

∂vb/∂x ∂vb/∂y ∂vb/∂z

0 0 0

 , (11)

where the derivatives are evaluated at the origin. There are only five independent
elements of this matrix on account of incompressibility (∂ub/∂x + ∂vb/∂y = 0), and
each element depends on time. For example, if ψb is associated with a single distant
vortex (see § 3 below), the rotation of the ellipsoid about this vortex, or rather the
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mutual rotation of the vortices Ω, implies a periodic time dependence. In this case, it
is convenient to adopt a frame of reference rotating about the vertical to remove this
time dependence; this amounts to adding Ω and −Ω to ∂ub/∂y and ∂vb/∂x above.
Details are given below in § 3 for a simple example.

The full flow matrix is the sum of Sb and Sv , where Sv accounts for the self-
induced strain. The simple operator relationship between ψ and q in (9) means that
ψv is a quadratic function of x, y and z inside the ellipsoid. This immediately implies
that Sv is spatially uniform, and we need this property to ensure that the ellipsoid
remains an ellipsoid. The dependence of Sv on the ellipsoidal shape and orientation,
for QG flow, was given by Meacham et al. (1994), but many details were worked out
much earlier and there is a long and interesting history stretching back (at least) to
Laplace in 1784 (see Chandrasekhar 1969 and Todhunter 1873). The exact form of ψv
inside an ellipsoid of uniform source strength (here the PV) was determined originally
by Laplace, and takes the form

ψv = 1
2
xTMFMTx, (12)

where

F =

 ξa 0 0

0 ξb 0

0 0 ξc

 (13)

is a diagonal matrix and the coefficients are determined from a, b and c in terms of
elliptic integrals of the second kind:

ξa = κvRD(b2, c2, a2), (14a)

ξb = κvRD(c2, a2, b2), (14b)

ξc = κvRD(a2, b2, c2), (14c)

where κv = Γv/4π is the vortex ‘strength’, Γv = 4
3
πabcQ is the vortex circulation,

qv = Q is the uniform PV within the ellipsoid, and

RD(α, β, γ) ≡ 3

2

∫ ∞
0

dt√
(t+ α)(t+ β)(t+ γ)3

. (15)

Using (12) for ψv , together with uv = −∂ψv/∂y and vv = ∂ψv/∂x, it follows that

Sv =LMFMT , (16)

where

L =

 0 −1 0

1 0 0

0 0 0

 . (17)

2.3. The complete model

The complete model now consists of the evolution equation (7) for the matrix A
together with the expressions (11) and (16) for the flow matrices Sb and Sv . It
remains to show how Sv can be computed fromA. Essentially, we need to invert (3)
for D and M. This can be accomplished by solving an eigenproblem, as discussed
shortly below, but first it proves convenient to rewrite (7) to evolve not A but its
inverse B = A−1. Using the fact that the product AB is the identity matrix, it
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follows that

dB
dt

= −BdA
dt
B

=B(STA+AS)B
=BST +SB, (18)

and moreover

B =MD−1MT , (19)

where D−1 is simply

D−1 =

 a2 0 0

0 b2 0

0 0 c2

 . (20)

Note in particular that dB3,3/dt = 0 in QG flow – this follows because there is no
vertical velocity. The element B3,3 is the half-height of the vortex squared. Note also

that the determinant |B| = |D−1| = (abc)2 is proportional to the squared vortex
volume and is also invariant (because QG flow is incompressible).

In order to determine the evolution of the ellipsoid it is necessary to be able to

calculate the half-lengths, a, b and c, and the orientation vectors â, b̂, and ĉ of the
ellipsoid from the matrix B. But equation (19), right multiplied by M, together with
(20) implies

Bâ = a2â, (21a)

Bb̂ = b2b̂, (21b)

Bĉ = c2ĉ. (21c)

Hence the half-lengths and the orientation vectors of the ellipsoid can be found
directly from the B matrix by solving a simple eigenvalue problem.

2.4. Sketch of the numerical algorithm

The algorithm for determining the evolution of the ellipsoid in a linear background
flow can be summarized as follows:

(i) Initialization
1. Read in values which determine the initial size and orientation of the ellip-

soid, i.e. a, b, c, â, b̂ and ĉ.
2. Read in the values which determine the background flow Sb. For the QG

model, there are only five independent terms in (11) because of incompress-
ibility.

3. Calculate the initial components of the B matrix from (19).
4. Calculate the elliptic integrals ξa, ξb and ξc from a, b, c using (14) and (15),

and hence calculate Sv from (16).
5. Add Sv to Sb to obtain the initial flow matrix S.

(ii) Integration
1. Integrate the evolution equation (18) for B by one time step.

2. Calculate the values for a, b, c, â, b̂ and ĉ by solving the eigenvalue problem
(21).

3. Calculate ξa, ξb and ξc, and from these Sv and S =Sv +Sb.
(iii) Full evolution

Repeat (ii) for desired number of time steps.
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Numerically, the elliptic functions RD are calculated using the NAG routine
S21BCF, and the eigenproblem is solved using the NAG routine F02FAF for a
symmetric positive-definite matrix. The time integration is carried out using a fourth-
order Runge–Kutta scheme, with a time step ∆t = 0.025/|Q|, where Q is the uniform
PV within the ellipsoid (we have taken Q = 1 in the algorithm developed). The inte-
gration is highly accurate with this time step, and the procedure is simple enough to
run efficiently with smaller time steps if particularly great accuracy is required.

The algorithm has been written in a way that allows for arbitrary flow matrices,
not just those that arise in QG flow. As such, it is easy to modify for any other
application in which a deforming ellipsoid features. A copy of the algorithm is
available at http://www-vortex.mcs.st-andrews.ac.uk.

3. Examples
In this section, we work through a few simple examples to clarify the nature of

the background flow matrix Sb and to illustrate some of the rich dynamics that this
simple system is capable of uncovering.

The previous studies of Meacham, Miyazaki and coworkers have already indicated
that the dynamics of an ellipsoid in a steady background flow can be surprisingly
complex. For example, vertical shear alone can lead to chaotic motion (Meacham
et al. 1997). Here, we look more closely into the origin of the background flow matrix
Sb to better understand the context of this model.

3.1. The flow generated by a distant vortex

We begin by considering the effect of a single distant vortex, of strength κb (= Γb/4π),
centred at x = X b, on an ellipsoidal vortex located at the origin. For the moment,
however, suppose the ellipsoid were centred at x = X v . Let R ≡ |X b − X v|. Then, to
leading order in 1/R, the vortices rotate about each other at a rate

Ω =
κb + κv

R3
; (22)

the vortices appear as points to this order of approximation. The shape and internal
structure of the vortices do not come into play until O(R−5), assuming each vortex
is reasonably compact. We next adopt a frame of reference rotating about the z-axis
passing through the joint centre of the two vortices, so that X b and X v are fixed.
Next, we take X v = 0, i.e. we move the target vortex of interest to the origin. Then,
in the vicinity of the origin, the background streamfunction takes the form

ψb = −κb
R

+ 1
2
xTPbx+ O(κb|x|3/R4), (23)

where notably the linear terms are absent and the matrix Pb is given by

Pb =
κb

R5

 R2 − 3X2
b −3XbYb −3XbZb

−3XbYb R2 − 3Y 2
b −3YbZb

−3XbZb −3YbZb R2 − 3Z2
b

−
 Ω 0 0

0 Ω 0

0 0 0

 . (24)

The corresponding velocity field (for QG flow) is given by

ub = (−∂/∂y, ∂/∂x, 0)ψb

=LPbx+ O(κb|x|2/R4) (25)
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from which it follows that Sb =LPb (cf. (1)). (Note, L here is specific to QG flow;
in general it gives the relation between velocity and streamfunction, i.e. u = L∇ψ.)
Thus, in QG flow,

Sb = γ


3X̃Ỹ 3Ỹ 2 − 1 + β 3Ỹ Z̃

1− β − 3X̃2 −3X̃Ỹ −3X̃Z̃

0 0 0

 , (26)

where X̃ ≡ X b/R,

γ ≡ κb/R3, (27)

hereinafter referred to as ‘the strain rate’, and

β ≡ Ω/γ = (κb + κv)/κb (28)

is a parameter depending only the ratio of the vortex strengths.
This form for the background flow matrix was considered by Meacham et al. (1994)

and in subsequent works but using a different notation. It can be simplified further
by choosing either X̃ or Ỹ to be zero, leaving only three non-zero components. For
example, if X̃ = 0

Sb = γ

 0 1
2
(1 + 3 cos 2θ) + β 3

2
sin 2θ

1− β 0 0

0 0 0

 , (29)

where Z̃ = sin θ and Ỹ = cos θ.
Note that even in this simplest case, there are three basic parameters describing the

background flow: γ, β and θ. We present here a few examples to give a taste of what
may be expected (a full exploration of the parameter space is the subject of current
research). We consider two cross-sections through parameter space, in which only one
parameter is varied. In the first, we fix θ = 30◦ and γ = Q/81, and take the vortex to
be initially spherical. This seemingly small value of strain corresponds to that induced
by an identical vortex only three radii distant, cf. (27). Figure 2 shows the evolution of
the vortex when β = 2 (then the background flow approximates that due to another
vortex of the same circulation, cf. (28)). Initially, at time t = 0, the vortex semi-axes
are aligned with the x-, y- and z-axes and the vortex rotates about the vertical. If no
background flow is applied the vortex would retain its initial spherical shape and its
orientation. However the instant application of the background flow causes the vortex
to immediately undergo deformation of shape and a rapid rotation which leaves it
tilted with respect to the vertical axis, as can be seen in figure 2 for time t = 10. We
emphasize, however, that the matrix B varies smoothly in time; the rapid changes
in orientation occur when two axes become of equal length at one instant of time;

afterwards, the axes switch since â, b̂ and ĉ are always chosen so that a 6 b 6 c.
The vortex then slowly precesses about the vertical axis. Between time t = 50 and
t = 60 the vortex again undergoes a quick change in orientation when two of the
axes exchange. This is followed by a similar event near time t = 120, when the vortex
shape comes close to spherical. Figure 3 summarizes the results of various simulations
having a range of β values. Here, the evolution of two measures of the departure
from sphericity, B11 − r̄2 and B22 − r̄2, where r̄3 = abc is the mean vortex radius, is
shown for four different values of β in the various panels. The vortex is spherical
only when these quantities are simultaneously zero. Note that the vortex returns to
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Figure 2. Evolution of an ellipsoid in a background flow characterized by β = 2, θ = 30◦ and
γ = Q/81. Time proceeds to the right and downwards starting from t = 0 (when the vortex is
spherical); the time interval between displayed images is 10. The co-latitude and longitude of
the view are 90◦ and 0◦ (corresponding to a projection of the three-dimensional image onto the
(y, z)-plane; from this perspective, one can observe that the height of the vortex is conserved).
Ellipses are drawn in planes perpendicular to the major axis of the ellipsoid (indicated as a thin
line). The front facing part of the ellipsoid is rendered with solid lines, while the back facing part is
rendered with dashed lines. The minor axis is indicated as a bold line, while the intermediate axis
is indicated as a thin line (in the plane of the equatorial ellipse).

a near spherical form occasionally. The oscillations seen lengthen with increasing β,
and exhibit a change of character when β = 4. In all cases, the oscillations resemble
a superposition of many waves of differing periods. However, on a much longer time
scale (roughly 500 units of time) the oscillations appear to be periodic – see figure 4.

In the second cross-section, we fix β = 2 and γ = Q/81, and again take the vortex
to be initially spherical. Figure 5, like figure 3 previously, shows the evolution of the
departures from sphericity for a range of angles θ. The oscillation is again nearly
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Figure 3. Evolution of parameters which measure the departure of the vortex shape from sphericity
for θ = 30◦, γ = Q/81 and for (a) β = 1, (b) β = 2, (c) β = 3, (d ) β = 4. The solid curve is B22 − r̄2

and the dotted curve is B11 − r̄2, where r̄3 = abc is the mean vortex radius (note that B33 is a
constant).

regular, particularly for θ = 0 (corresponding to a distant vortex centred on the same
horizontal plane). As θ −→ 90◦, the amplitude of the oscillation tends to zero. This
angle corresponds to a distant vortex located directly above the vortex, and in this
configuration it cannot deform the vortex (the background flow matrix Sb in (29)
reduces to a pure rotation). Again, like in the previous series, all examples shown here
are periodic on a sufficiently long time scale (not shown).

3.2. Vortex motion in a slowly varying background flow

The implicit assumption made in the previous subsection that the background flow
is steady is not in general realistic. In a flow containing many vortices, such as
QG turbulence, vortices drift together and apart under the influences of the vortices
around them. The distance between vortex centres typically varies in time, and
therefore the strain rate and rotation rate, as well as the angle θ above, vary. The
theory presented above in fact applies under these circumstances as well, since only the
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Figure 4. Extended evolution of B11 − r̄2 and B22 − r̄2 for β = 2, θ = 30◦ and γ = Q/81 showing
the long-time periodic behaviour of the vortex motion.

instantaneous background flow is important in the evolution equation for the ellipsoid.
In this subsection, we consider the effect of a slowly varying, weak background flow,
arguably typical of the flow felt by vortices in dilute turbulence, when vortices are on
average widely separated (cf. Dritschel, de la Torre Juárez & Ambaum 1999; Dritschel
1999). Of course, we cannot hope to describe strong interactions like merger, but these
interactions are rare compared to the weak long-range interactions considered next.

For distant interactions, it is appropriate to assume that the dimensionless strain
rate ε = γ/Q � 1 and moreover that the background flow varies on the long time
scale τ = εt. The flow matrix then takes the form

Sb = εG(τ), (30)

where G is a matrix with five independent components likeSb in (11). The matrix G,
and a sufficient number of time derivatives of G, are assumed to be continuous. We
furthermore assume that the vortex itself is slowly varying (on the long time τ) and
that its shape departs by O(ε) from an ellipsoid orientated with the x-, y- and z-axes,
and having corresponding half-lengths p1/2, p1/2 and p−1. This corresponds to a vortex
of unit mean radius. This special choice of the basic vortex shape is made to prevent
the ellipsoid from exhibiting fast time dependence (on t) through self-rotation. Hence,
we take

B(τ) =B0 + εB1(τ) + ε2B2(τ) + O(ε3), (31)

where B0 is a diagonal matrix with the entries p, p and p−2 down the diagonal. Since
B is a symmetric matrix, it has only six independent components, and it is convenient
at this stage to introduce the following short-hand notation for the elements of B:

B =

 B1 B2 B3

B2 B4 B5

B3 B5 B6

 =

6∑
k=1

JkBk, (32)
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Figure 5. As figure 3, but with the fixed background flow parameters β = 2, γ = Q/81, and for
(a) θ = 0◦, (b) θ = 30◦, (c) θ = 60◦, (d ) θ = 85◦.

where the matrices Jk are

J1 =

 1 0 0

0 0 0

0 0 0

 ,

J4 =

 0 0 0

0 1 0

0 0 0

 ,

J2 =

 0 1 0

1 0 0

0 0 0

 ,

J5 =

 0 0 0

0 0 1

0 1 0

 ,

J3 =

 0 0 1

0 0 0

1 0 0

 ,

J6 =

 0 0 0

0 0 0

0 0 1

 .


(33)

This expansion (equation (31)) is constrained by conservation of vortex height and
volume, equivalent to B6 = constant and |B| = constant. The first constraint implies
that B6

0 = p−2 and B6
n = 0 for orders n > 0. The second constraint implies at O(ε1)

B4
1 = −B1

1 (34)
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and at O(ε2)

B1
2 + B4

2 = p2[(B3
1)2 + (B5

1)2] +
1

p
[(B1

1)2 + (B2
1)2]. (35)

Next, using the evolution equation (18) for B, we have

ε2 dB1

dτ
+ O(ε3) = (B0 + εB1 + εB2 + · · ·)[ST

v (B0 + εB1 + ε2B2 + · · ·) + εGT ]

+[Sv(B0 + εB1 + ε2B2 + · · ·) + εG](B0 + εB1 + ε2B2 + · · ·). (36)

Zeroth order:

At O(ε0), equation (36) gives

B0ST
v (B0) +Sv(B0)B0 = 0, (37)

which is always satisfied for the diagonal form of B0 taken. Here, Sv =LF where
F is given by (13) and (14) with ξa = ξb = 1

3
RD(p, p−2, p) (cf. (15)), or explicitly

Sv(B0) =

 0 −ξa 0

ξa 0 0

0 0 0

 , (38)

where we have taken Q = 1 without loss of generality to simplify κv = 1
3
Qabc→ 1

3
.

First order:

At O(ε1), equation (36) gives

5∑
k=1

CkBk1 =H1, (39)

where

Ck =
∂

∂Bk

[B0ST
v (B) +BST

v (B0) +Sv(B)B0 +Sv(B0)B]∣∣B=B0

=
∂Sv

∂Bk

∣∣∣∣B=B0

B0 +Sv(B0)Jk +JkST
v (B0) +B0

∂ST
v

∂Bk

∣∣∣∣B=B0

(40a)

H1 = −(B0GT +GB0). (40b)

The matrices Ck have the forms

C1 = −C4 = e1J2, C2 = 2e1(J4 −J1), C3 = e2J5, C5 = −e2J3, (41)

where e1(p) and e2(p) involve elliptic integrals and are plotted in figure 6 versus p.
Note in particular that the product of Ck and Cj element-wise, denoted Ck ⊗Cj ,

is zero if j 6= k (excluding k or j = 4). Hence, we can directly solve for the Bk1 in (39)
by applying Cj⊗ to both sides of the equation, yielding

B1
1 − B4

1 =
C1 ⊗H1

2e2
1

, B2
1 =
C2 ⊗H1

8e2
1

, B3
1 =
C3 ⊗H1

2e2
2

, B5
1 =
C5 ⊗H1

2e2
2

, (42)

together with the volume constraint B4
1 = −B1

1 .
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Second order:

At O(ε2), equation (36) gives

5∑
k=1

CkBk2 =H2, (43)

where

H2 =
dB1

dτ
− (B1GT +GB1)−

5∑
m=1

5∑
n=1

KmnBm1 B
n
1 , (44a)

Kmn =
1

2

∂2Sv

∂Bm∂Bn

∣∣∣∣B=B0

B0 +
∂Sv

∂Bm

∣∣∣∣B=B0

Jn +Jn ∂ST
v

∂Bm

∣∣∣∣B=B0

+B0

1

2

∂2ST
v

∂Bm∂Bn

∣∣∣∣B=B0

,

(44b)

and where the 5× 5 ‘matrix of matrices’ K is

d1J2 d6J1 + d7J4 d8J5 d2J2 d9J3

d10J1 + d3J4 0 d11J3 −d3J1 − d10J4 −d11J5

d4J5 d12J3 d13J2 d14J5 d5J1 + d15J4

−d2J2 −d7J1 − d6J4 −d9J5 −d1J2 −d8J3

−d14J3 −d12J5 −d15J1 − d5J4 −d4J3 −d13J2


.

(45)

There appear to be five independent coefficients dk; we have found the following ten
relations among these coefficients:

d6 = 2d2 − d3, (46a)

d7 = 2d1 − d3, (46b)

d8 = d1 − d3 + d4, (46c)

d9 = −3d1 + d2 + d3

2
− d4, (46d)

d10 = d3 − 2(d1 + d2), (46e)

d11 =
d1 + d2 + 3d3

2
, (46f)

d12 =
3(d1 + d2) + d3

2
, (46g)

d13 = −2(d1 + d2 + d3), (46h)

d14 =
3(d1 + d2) + d3

2
+ d4, (46i)

d15 = d5 − 4(d1 + d2 + d3); (46j)

see figure 7 for the dependence of the dk , k = 1, 2, . . . , 5, on the vortex shape p.
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Figure 6. The dependence of the first-order coefficients e1 (a) and e2 (b) on the vortex shape p
and its inverses 1/p. The solid curves correspond to the coefficients as a function of p for values of
p 6 1, and the dashed curve corresponds to the coefficients as a function of 1/p for values of p > 1.

Taking the element-wise product of the Ck matrices with (43) gives

B1
2 − B4

2 =
C1 ⊗H2

2e2
1

, B2
2 =
C2 ⊗H2

8e2
1

, B3
2 =
C3 ⊗H2

2e2
2

, B5
2 =
C5 ⊗H2

2e2
2

, (47)

and the volume constraint (35) allows one to determine B1
2 and B4

2 separately in terms
of the Bk1 .

Note that these matrix elements Bk2 depend on the slow time variation of B1

through the dB1/dτ term in H2, cf. (44a). Thus, since the elements Bk1 depend on
the slowly varying background flow matrix G(τ) through (40b) and (42), then the Bk2
actually involve the rate of change of the background flow matrix.

These solutions describe the slow evolution of the ellipsoid in a weak, slowly
varying background flow, to second order in the strain rate, and in the rate of change
of the background flow. Note that to first order, the vortex evolves adiabatically by
adopting an instantaneous equilibrium with the background flow. At second order,
the vortex departs slightly from this equilibrium but still evolves on the long time
scale τ = εt. This quasi-adiabatic evolution has been observed frequently in two-
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Figure 7. The dependence of the second-order coefficients d1, d2 . . ., and d5 on the vortex shape p
and its inverse 1/p. The solid curves correspond to the coefficients as a function of p for values of
p 6 1, and the dashed curve corresponds to the coefficients as a function of 1/p for values of p > 1.

dimensional vortex dynamics (Dritschel 1995; Legras, Dritschel & Caillol 2001), but
it appears to be far more general. Slow evolution appears possible for any slowly
forced dynamical system so long as the nearby equilibrium is a stable one.

We examine next several examples, using three values of the vortex shape parameter
p = 1

2
, 1 and 2, to see how well the theory presented above compares with integrations

of the exact equations of motion for an ellipsoid. For simplicity, we take G(τ) = g(τ)V
here, whereV is a constant matrix of the form given in (29) with β = 2 and θ = 30◦.
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Figure 8. The evolution of Bk , k = 1, 2, . . . , 5 from t = 0 to 1000, for case (i). Here, ε = 0.0025,
tm = 400, β = 2, θ = 30◦, and p = 1. The bold, dashed, and thin curves correspond to the full
equations, the first-order theory, and the second-order theory, respectively. The r.m.s. errors of the
first- and second-order theories are shown in the lower right frame.

Two cases are considered: (i) g(τ) = 1− exp(−τ/τm) and (ii) g(τ) = 1− exp(−(τ/τm)2).
In case (i), the initial growth is linear in time, while in case (ii) it is quadratic.

The evolution of the Bk (k = 1–5) is shown for case (i) in figure 8 and for case
(ii) in figure 9, with the bold curves showing the results of the full equations, the
dashed curves showing the first-order theory, and the thin solid curves showing the
second-order theory. Also shown in the lower right-hand frame is the r.m.s. error
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Figure 9. As figure 8, but for case (ii) (g(τ) = 1− exp(−τ/τm)2).

[ 1
5

∑5
k=1(B

k
approx − Bk)2]1/2. All of these results are for an initial vortex having p = 1.

We have taken ε = 0.0025 and τm = 1, corresponding to a strain growth period
of tm = ε−1 = 400. This value of strain may seem small, but recall that the strain
rate induced by a vortex falls off with the inverse cube of the distance from the
vortex, cf. (27). For instance, given a background and target vortex of the same
uniform PV, the background vortex would induce this value of strain when it is
only (3ε)−1/3R ≈ 5.1R distant from the centre of the target vortex, where R is the
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mean radius of the background vortex. Doubling ε reduces the above distance to
approximately 4R.

The results shown in figures 8 and 9 demonstrate that the second-order theory
comes much closer to capturing the full dynamics than the first-order theory (note
that B2

1 = B3
1 = 0 for all time). The main discrepancy, particularly in case (i), is the

failure to capture a relatively short-period oscillation (though note that its mean level
is accurately predicted). This oscillation is due to the wobbling of the vortex about the
quasi-adiabatic equilibrium, and also occurs for ellipses in two dimensions (Legras
et al. 2001). It cannot be captured by the theory presented simply because the theory
assumes a slow time dependence. However, note that the amplitude of the oscillation
is an order of magnitude less in case (ii) than in case (i). In case (ii), the strain grows
quadratically in time initially, and the weaker oscillation suggests that its origin lies
in the initial conditions. That is, the oscillation can be potentially eliminated by a
judicious choice of the initial conditions.

To see what is required, we need only apply the theory presented above at t = 0.
We seek the corrections Bkm, m = 1, 2, . . ., to our original vortex Bk0 such that no fast
oscillations are induced, order by order. We also insist that the corrections preserve
the original volume and the height of the vortex (|B| and B6 are left unchanged).
The first- and second-order corrections are in fact given already in equations (42) and
(47) (together with the volume constraints (34) and (35)). That is, we use the theory
to second order in ε to adjust the initial conditions used for the exact equations in
order to reduce the subsequent oscillations. In the second case of initially quadratic
strain growth in time, figure 9 shows that all of the corrections to B0 are initially zero
to second order. However, in case (i) (having initially linear strain growth), figure 8
shows that there is a non-zero correction to B2 and B3 initially. This stems from the
term dB1/dτ in H2 at second order (cf. (44a)). This is the only non-zero term at
τ = 0, and it gives rise to non-zero values of B2

2 and B3
2 . For the second case, even

this term is zero, and one may anticipate that third-order corrections to the initial
conditions are necessary to reduce the small oscillations seen in figure 9 (though no
attempt is made to go this far).

Let us then re-examine case (i), now using adjusted initial conditions for the
exact equations. The results are shown in figure 10 (cf. figure 8). The much weaker
oscillations observed here demonstrate that the oscillations are a product of the initial
conditions. In theory, it appears possible to reduce these oscillations to arbitrarily
small levels, leading to a completely slow evolution for the exact equations. In this
case, the shape and orientation of the vortex are controlled by the background flow.

Other values of the initial vortex shape p give qualitatively similar results. Com-
parisons of the full equations, the first-order theory, and the second-order theory
following the format of figures 8 and 9 for p = 1 are given in figures 11 and 12 for
p = 1

2
(for a prolate ellipsoid), and in figures 13 and 14 for p = 2 (for an oblate

ellipsoid). The pair of figures for each p correspond to the two cases of initially linear
and quadratic strain growth. In case (i), we have used adjusted initial conditions for
the full equations to reduce the short-time-scale oscillations, as just discussed. In case
(ii), the largest deviation of the theory from the full equations occurs at the time
when the rate of change of the strain growth is a maximum. This can be seen for B2

2

and B3
2 at approximately time t = 280 in figures 9, 12 and 14. The results indicate

that the theories are less accurate for prolate ellipsoids than they are for oblate ones,
and apparently most accurate for nearly spherical vortices. This may be because the
period of the (relatively) high-frequency oscillations is shorter for the nearly spherical
vortices than for the oblate and prolate ellipsoids. This would indicate that the accu-
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Figure 10. As in figure 8 for initially linear strain growth, but using adjusted initial conditions for
the exact equations to reduce the subsequent oscillations. Note, B2

1 = B3
1 = 0 for all time.

racy of the theories is better when the period of these high-frequency oscillations is
shorter. Nevertheless, we have checked that the theories converge, at times t = O(tm),
by varying both the maximum strain rate ε and the strain growth period tm. For
1/tm ∼ ε, the r.m.s. errors are O(ε2) and O(ε3) for the first- and second-order theories,
respectively.

The above analysis may help to interpret the behaviour of vortices in more complex
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Figure 11. As in figure 8 featuring initially linear strain growth, but for p = 0.5 (note, adjusted
initial conditions are used for the exact equations). Note, B2

1 = B3
1 = 0 for all time.

flows, such as rotating stratified (QG) turbulence. Could it be true that vortices in-
teract quasi-adiabatically over most of their lifetimes? If so, many aspects of their
interactions can be understood from the above analysis, which represents a great sim-
plification of the full fluid equations. Then, this would mean that the dynamics of the
flow may be reduced, mostly, to that of interacting ‘point’ vortices, albeit with a modi-
fied interaction law that depends on the shape and orientation (through theB matrix)



168 W. J. McKiver and D. G. Dritschel

0

–0.002

–0.008
0 200 400 600 800 1000 0

200 400 600 800 1000

0.05

0.10

0.15

0.20

0

0.008

0.005

0.010

0.015

0.020

B1

B3

B5

B2

B4

–0.004

–0.006

3.0

0.5

200 400 600 800 1000

0 200 400 600 800 1000
Time

0 200 400 600 800 1000

0 200 400 600 800 1000

0.015

0.010

0.005

Time

R
M

S
 e

rr
or

0.002

0.004

0.006

2.5
(¬10–4)

0

–0.002

0.25

2.0

1.5

1.0

0

–0.5

Figure 12. As figure 11 (p = 0.5) but for case (ii) (initially quadratic strain growth).

of the vortices. There is support for this idea in two-dimensional flow (cf. Dritschel
1995; Legras et al. 2001). Current work on three-dimensional QG turbulence also
suggests that this idea may hold there as well (Reinaud, Dritschel & Koudella 2003).

4. Conclusions
We have shown that the equations governing the motion of a fluid ellipsoid in

a linear background flow may be written simply in terms of two 3 × 3 matrices
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Figure 13. As in figure 8 featuring initially linear strain growth, but for p = 2 (again, adjusted
initial conditions are used for the exact equations). Note, B2

1 = B3
1 = 0 for all time.

B and S. The former symmetric matrix contains all the information necessary to
describe the shape and orientation of an arbitrary ellipsoid. The latter matrix specifies
the gradient of the velocity field at the edge of the ellipsoid. It consists of a self-induced
part (originally calculated by Laplace in 1784) and a background part, representing
the leading-order effects of distant vortices not explicitly modelled.

The advantage of this formulation over, say, one using orientation angles and
axis lengths (Meacham et al. 1994) is that the equations are free from singularities.
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Figure 14. As figure 13 (p = 2) but for case (ii) (initially quadratic strain growth).

To a degree, this formulation is not new: the elements of the B matrix were used
by Meacham et al. (1997) and later by Miyazaki and co-workers. However, they
did not consider evolving the matrix directly via the remarkably simple equation
dB/dt = BST +SB, nor did they indicate how one can recover all of the shape
characteristics of the vortex via the eigenproblem (21). We have also presented this
model in a more general way so that it can be easily adapted for other applications
(a code has been made available at http://www-vortex.mcs.st-andrews.ac.uk).

We have developed a theory for the slow, quasi-adiabatic evolution of a vortex in a
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weak, slowly varying background flow. In this theory, the full shape and orientation
of the vortex is controlled by the background flow. To first order in the dimensionless
strain rate, the vortex adopts an instantaneous equilibrium with the background flow.
To second order, the vortex departs slightly from this equilibrium, but in such a way
as to allow it to slowly evolve from one near-equilibrium state to the next. It remains
to be shown how frequent this behaviour is in flows containing many vortices, and
whether or not vortices are attracted to this quasi-adiabatic state of evolution. That is,
do their internal oscillations damp out? Evidence for this, in two-dimensional flows,
is available in Legras et al. (2001).

It is tempting to construct a simplified model of many interacting vortices (as in
QG turbulence) using ellipsoids. This would give a more accurate estimate of the
background flow matrixSb as well as an equation for the evolution of the centroid of
each vortex. This has in fact been done recently by Miyazaki et al. (2001), employing
the full equations for each ellipsoid (no quasi-adiabatic assumption), and working out
the leading-order flow induced by each ellipsoid on all others, as in § 3.1 here. The
limitation of this model, however, is that it parameterizes the merger of vortices in an
ad hoc manner. The merger or close interaction of vortices is a highly complex process
(cf. Dritschel 2002; Reinaud & Dritschel 2002). In particular, as in two dimensions
(Dritschel & Waugh 1992; Dritschel & Zabusky 1996), vortex merger is a poor
description of close vortex interactions. But the three-dimensional situation is further
complicated by the fact that vortex interactions can often produce more vortices than
there were to begin with. It is unlikely, in our opinion, that any parameterization
of such interactions will be even qualitatively correct. The only recourse is to use a
more complete set of equations (in which the ellipsoidal approximation is abandoned)
under these circumstances. It may be possible to do this locally and over a short time
interval thereby retaining much of the simplicity of the ellipsoidal model.

There are several ways in which this work can be usefully extended. First, a
more complete account of the background flow due to surrounding vortices can be
included by explicitly calculating the part of this background flow which preserves
the ellipsoidal shape of a given vortex. This is not the same as using a Taylor series
expansion, as done in § 3.1 and by Miyazaki et al. (2001). The explicit calculation of
the background flow was done by Legras & Dritschel (1991) in the two-dimensional
‘elliptical model’, and it was shown to be significantly more accurate in modelling
close-range interactions than a series-based (or moment-based) approach (see also
Dritschel & de la Torre Juárez 1996). For example, the elliptical model can predict the
onset of symmetric vortex merger within 1% of the observed inter-centroid separation
(Legras & Dritschel 1991). In three dimensions, a model with similar quantitative
accuracy would be especially useful since a direct determination of the conditions
for vortex merger and other strong interactions is difficult due to the greater number
of parameters (e.g. vertical offset, vortex height-to-width aspect ratio, etc.) and the
markedly greater numerical cost of three-dimensional numerical calculations.

Another useful extension would be to permit a variable distribution of PV by
nesting ellipsoids as done previously with ellipses in the two-dimensional elliptical
model (cf. Legras et al. 2001 and references therein). Such nested vortices are not
generally exact solutions, but their two-dimensional analogues are in practice excellent
approximations to variable-PV vortices. This extension would permit one to study, in
a simple approximate way, the erosion or stripping of low-level peripheral PV from
vortices by strain and shear, as was done in the two-dimensional context by Legras
et al. (2001). This would allow one to determine the approximate conditions required
for the onset of stripping and the PV profile characteristics which are resistant
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to stripping in a arbitrary background flow. Considering the number of parameters
involved (three for the background flow alone), a direct attack using the full equations
would be prohibitively expensive.

Also, it would be worth investigating the class of inversion operators which may
feature in the motion of an ellipsoid. Up to now, only Laplace’s operator has been
considered. This operator gives rise to a linear, self-induced flow field inside the
ellipsoid, through the relations ∇2ψv = qv and uv = L∇ψv (where L is a 3 × 3
constant matrix). This, and the local linearity of the background flow, are sufficient
for the evolution equation (18) for B to hold. Clearly, however, the flow need be
linear only at the surface of the ellipsoid, so in principle other operators are possible.
The operator prescription of the velocity field is itself not necessary – a prescription
of the surface flow field as a function of the ellipsoid shape (B) is sufficient.

This paper has focused on situations in which the velocity is induced by the
instantaneous shape of the ellipsoid. However, one can imagine other situations,
for instance in which the boundary of the ellipsoid is accelerated according to its
instantaneous shape. Indeed, much of the early work on this subject concerned the
gravitational oscillations of an ellipsoidal body of uniform density, modelling a galaxy,
a star or a planet (Todhunter 1873). Here the Laplacian also features in determining
the gravitational potential from the mass density, and the gradient of this potential
gives the acceleration of the surface. In this application, discussed in Chandrasekhar
(1969) and references therein, the evolution equations are second order in time.
A similar situation arises for uniformly charged bodies in an electromagnetic field.

The motion of an ellipsoid is seen to be governed by a simple low-order dynamical
system. This is elegant, but is it useful? Its importance depends on its robustness.
In other words, in the full equations of motion, do non-ellipsoidal disturbances
significantly disturb the underlying ellipsoidal dynamics? For the quasi-geostrophic
equations, this is an open question, but our simulations of QG turbulence and of
individual vortex interactions indicate that vortices often exhibit a near-ellipsoidal
shape, most often of a slightly oblate spherical form (Reinaud et al. 2003). Moreover,
it can be shown that ellipsoids with a circular horizontal cross-section – in the absence
of a background flow – are stable to finite-amplitude disturbances (Dritschel 1988).
This, together with the well-known (though generally unproven) robustness of two-
dimensional elliptical vortices in typical background flows suggests at least comparable
robustness for three-dimensional ellipsoidal vortices.

One may also ask what effect departures from the idealized quasi-geostrophic model
might have on the robustness of the ellipsoidal approximation. For instance, in the
full Boussinesq equations for a stratified rotating fluid, can vortices be well-modelled
by ellipsoids? A fundamentally new effect, not present under the quasi-geostrophic
approximation, is the radiation of internal gravity waves. This radiation occurs for all
vortices having a non-circular horizontal cross-section and probably does not preserve
an initially ellipsoidal vortex shape. However, this radiation tends to be weak except
under strongly ageostrophic conditions, rarely encountered in the Earth’s atmosphere
and oceans. Hence, it may be possible to extend the present ellipsoidal approximation
to more realistic fluid dynamical models.
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